The Distribution of Ideal Class Numbers of Real Quadratic Fields

By M. D. Hendy

Abstract

A table of class numbers of real quadratic number fields $Q(\sqrt{ } d)$ with squarefree determinant $d, 1000<d<100000$ is examined and several analyses of the distribution of the class numbers, and the number of classes per genus are made. From these, two conjectures on the possible distribution of the class numbers as $d \rightarrow \infty$ are made, which are consistent with Gauss's related conjecture.

1. Introduction. In 1965 K. E. Kloss [4] announced the production of a table listing the primes $p \equiv 1(\bmod 4), p<120000$ which are the determinants of real quadratic number fields whose domains of integers are unique factorization domains. He notes that approximately 80% of the primes considered are in the table. In addition, a table of ideal class numbers $h(p)$ for $Q(\sqrt{ } p), p \equiv 1(\bmod 4), p$ prime <95000 was produced.

Subsequently, a table of class numbers [5] containing $h(p)$ for the first 5000 primes $p \equiv 1(\bmod 4),(5 \leqslant p \leqslant 105269)$ was deposited in the UMT file. In his review of this file, D. Shanks [7] analyzed the data in two ways. Firstly, he followed up Kloss's observation on the proportion of fields with $h(p)=1$, producing a table showing the number of primes p in each portion of 1000 values, which had a given class number. He noted that the proportion of values p with class numbers $h=1,3,5,7$ and 9 , respectively, was $80 \%, 10 \%, 3.6 \%, 2 \%$ and 1.2%; and further that these proportions were remarkably stable in the smaller intervals. This distribution reinforces Gauss's related conjecture [1, Section 304] that the number of fields with one class per genus is a fixed proportion of the population as the determinant goes to infinity. Shanks raises the question on what is the nature of this distribution.

Another more recent tabulation, by Richard B. Lakein [6], is a table of class numbers of the quartic fields $K=F\left(\pi^{1 / 2}\right)$ where $F=Q(i)$ for 5000 Gaussian primes $\pi \equiv \pm 1(\bmod 4)$. This distribution of class numbers of these fields is strikingly similar to that noted earlier by Shanks [7].

Shanks' second analysis was a table of the exceptionally large class numbers, or more specifically, those primes p, for which $h(p)$ is larger than any preceding class number. This list contained 12 primes ranging from $p=229(h=3)$ to $p=90001$ ($h=87$). We can note that these values are bounded above by $\sqrt{ } p$, with the ratio $h / \sqrt{ } p$ ranging from 0.20 to 0.36 .

[^0]

	さ	\cdots	\checkmark			
	$\stackrel{\sim}{N}$				の	N Nエ
	N			$\stackrel{\square}{\square}$		
	\cdots	$\checkmark-$	N	11	N	નーツNかNNさ
	앙		\cdots	bo		
	$\stackrel{\square}{\square}$	\rightarrow			\cdots	
	$\stackrel{\infty}{\square}$					
	$\stackrel{N}{\mathrm{~N}}$	$\rightarrow \quad \rightarrow \sim=$	才		11	
	$\stackrel{\bullet}{-}$		\pm		4	
	$\stackrel{\sim}{\square}$	$\sim \sim$	\pm		$\begin{aligned} & \widetilde{\sim} \\ & 0 \\ & 0 \end{aligned}$	
\pm	$\stackrel{ \pm}{-}$	$\rightarrow \quad$ Nor	$\xrightarrow{\circ}$			
∞	$\stackrel{n}{r-1}$	$\checkmark \sim$ の $-\quad \rightarrow 0$	$\xrightarrow{\circ}$			
	$\stackrel{\sim}{\sim}$	$\rightarrow \quad$－$+\sim \sim$	a			
	$\stackrel{-}{-}$	N－，	\cdots			
	\cdots		$\stackrel{\text { ® }}{\sim}$		$\stackrel{-}{-}$	$\cdots \quad \mathrm{N}$
	σ		さ		－	
	∞		$\stackrel{H}{\square}$		0	\rightarrow r
			∞		∞	～Nさ
	N		n \sim \sim	∞	N	न \quad HNJ
	ω		$\begin{aligned} & \text { m } \\ & \pm \end{aligned}$	$\begin{aligned} & 11 \\ & \infty \end{aligned}$	ω	
	10		O 0 0		\sim	
			－		\pm	小мぃо न－
	\pm	「レincerente	\％		\cdots	
	\cdots		n － न －		\sim	
	N		$\begin{aligned} & 10 \\ & \underset{1}{-1} \\ & \text { N} \end{aligned}$		\checkmark	
	\square		O 0 0 0		11 $4-1$	
	$\begin{aligned} & 11 \\ & 4-1 \end{aligned}$				－	
	$\begin{aligned} & \text { r-1 } \\ & \underset{\sim}{0} \\ & 0 \end{aligned}$					$\vee \vee \vee \vee \vee \vee V \vee \vee V \vee$
						VVVVVVVVVVv
		$\begin{array}{llllllllll} \vee & \vee \\ \mathcal{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$				
		$\vee \vee \vee \vee \vee \vee \vee \vee V \vee ~$	V			

Recently the opportunity arose during the testing and early operation of a Burroughs B6700 computer to run a job which was "computer bound" for long intervals with little input output and a small usage of core.

A program was written based on a class number algorithm which is similar to Ince's procedure of counting periods. Briefly, this algorithm was based on an adaption of Lagrange's algorithm for calculating the continued fraction coefficients of a quadratic surd as described in [2]. If we apply this algorithm to the quadratic surd β / b, where β is a primitive algebraic integer of the real quadratic field of discriminant D, and $b \| N(\beta)$, $b<1 / 2 D^{1 / 2}$, then we find that the sequence Q_{n} in the algorithm includes the norms of all the primitive ideals in the same class as $B=(b, \beta)$, with norm $<1 / 2 D^{1 / 2}$. Hence, by using the Minkowski bound, we can calculate the class number. The program calculated the class number, $h(d)$, the number of ideal genera, $g(d)$ and the number of ideal classes of the principal genus, $f(d)$ for each field $Q(\sqrt{ } d)$ with squarefree determinant $d, 1000$ $<d<100000$. A table was produced, in 99 sections, each section giving $d, f(d), g(d)$, $h(d)$ for each squarefree d in an interval of 1000 integers, followed by a count of the number fields with each combination $(g(d), f(d))$ that occurred.
2. Checking the Table. Several partial checks were made. The most important was that $g(d), h(d)$ were calculated independently, and a check was made to ensure that their ratio $f=h / g$ was integral. This check is, of course, of no value for $g=1$. Secondly, the values of $h(d)$ for the first 1227 values $1<d<2025$ were computed and compared with the corresponding class numbers in Ince's table [3]. Finally, the 16 extreme values of $h(p)$ extracted by Shanks in [7] were checked against the table.
3. Distribution. The distribution of the class numbers of the fields is given in Table I. For squarefree integers d in a given interval, let N_{g} be the number of fields $Q(\sqrt{ } d)$ with g genera, and let $N_{f g}$ be the number of these which have f ideal classes per genus. The entries in Table I are the values N_{g} and $N_{f g}$ for values of d in intervals of 10000 integers. If we consider the proportions $N_{f g} / N_{g}$ we find for small values of h, these proportions appear to be independent of d, although in the tail of the distribution with h relatively large, the proportion increases with d. A plot of the value $N_{f g} / N_{g}$ against f on log-log paper suggested that for small values of $h, N_{f g} \doteqdot N_{g} / f^{2}$. This would mean that for $g=1, N_{f g} / N_{g} \doteqdot 8 \pi^{-2} f^{-2}$ (odd values of f only), and for $g>1$, $N_{f g} / N_{g} \doteqdot 6 \pi^{-2} f^{-2}$.

In Table II we compare the proportions $N_{1 f} / N_{1}$ for the total population, with

Table II

| $f=$ | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | + |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $8 \pi^{-2} f^{-2}$ | 81.1 | 9.0 | 3.2 | 1.7 | 1.0 | 0.67 | 0.48 | 0.36 | 0.28 | 0.22 | 2.0 |
| $N_{1 f} / N_{1}$ | 80.5 | 10.3 | 3.7 | 1.8 | 1.2 | 0.65 | 0.48 | 0.38 | 0.20 | 0.16 | 0.60 |
| $N_{f}^{(1)} / 5000$ | 79.7 | 10.4 | 3.6 | 2.0 | 1.3 | 0.58 | 0.56 | 0.40 | 0.22 | 0.22 | 0.90 |
| $N_{f}^{(2)} / 5000$ | 79.9 | 10.5 | 4.0 | 1.7 | 1.1 | 0.56 | 0.60 | 0.42 | 0.38 | 0.12 | 0.76 |

the values of $6 \pi^{-2} f^{-2}$. For comparison we also include $N_{f}^{(1)} / 5000$, and $N_{f}^{(2)} / 5000$, where the $N_{f}^{(1)}$ are the corresponding values obtained from Kloss's table [7] and the $N_{f}^{(2)}$ from Lakein's table [6]. The three distributions agree closely although they are from dissimilar populations. Each value is expressed as a percentage.

In Table III we compare the proportions $N_{g f} / N_{f}$ for $g=2,4,8$ for the total population, with the values of $6 \pi^{-2} f^{-2}$ each proportion being given as a percentage.

Table III

$f=$	1	2	3	4	5	6	7	8	9	10	+
$\mathrm{f}=2$	66.5	13.0	8.4	3.2	3.0	1.7	1.3	0.75	0.86	0.47	1.7
4	64.6	15.0	8.3	4.5	2.8	1.8	1.1	0.60	0.55	0.23	0.57
8	67.1	18.2	8.4	3.4	1.8	0.60	0.18	0.18	0.05	0.00	0.09
$6 f^{-2} \pi^{-2}$	60.8	15.2	6.8	3.8	2.4	1.7	1.2	0.95	0.75	0.61	5.8

It can be seen that when h is small $(h<25), N_{f g f} / N_{g}$ is independent of g for $g=2,4$ and 8. Again, the behavior of the tail, for large values of h differs markedly from $6 f^{-2} \pi^{-2}$, indeed if $N_{g f}=6 f^{-2} \pi^{-2} N_{g}$, we would find the average value of f over all fields in the interval with g genera was

$$
\left(\sum_{f=1}^{\infty} f \cdot N_{g f}\right) / N_{g}=6(8) \pi^{-2} \sum_{f=1}^{\infty} f^{-1}=\infty,
$$

as opposed to the measured average values, $1.96,2.09,1.89,1.59$ and 1.31 for the values $g=1,2,4,8$ and 16 .

If we compute the values of $\pi^{-1} f^{-1}\left(6(8) N_{g} / N_{f g}\right)^{1 / 2}$ for $5<e<10$, we find that for values of $h \leqslant 25$, this value ranges from $1.46\left(N_{1,23}=6\right)$ to $0.87\left(N_{8,3}=118\right)$, with an average value of 0.94 . Hence, we conjecture, for a range of values of d in the neighborhood of the integer a,

Table IV

f	d	f	d	f	d	f	d	f	d
$\mathrm{g}=1$		43	14401	13	13321	36	45511	19	99295
1	2*	45	32401	14	11794	37	38026*	20	94546
3	79*	47	78401	15	11321	38	93619	21	77779
5	401	49	70969	16	25282	47	99226	24	50626*
7	577	51	69697	17	19882	$\mathrm{g}=4$		$\mathrm{g}=8$	
9	1129	53	69694	18	25279	1	130	1	1155
11	1297	57	41617	19	19834	2	399	2	4354
13	4759	63	57601	20	41599	3	730*	3	10455
15	9871	87	90001	21	47959	4	3026	4	16555
17	7054	$\mathrm{g}=2$		22	59203	5	3970	5	19210
19	15409	1	10*	23	49321	6	9790	6	33490
21	7057	2	82*	24	79522	7	5626*	7	48399
23	23593	3	235	25	54769	8	16555	8	81130
25	24859	4	226*	26	77842	9	18226	9	65026
27	8761*	5	1111	27	49834	10	16899	11	56170
29	49281	6	1522	28	84679	11	11026*	$\mathrm{g}=16$	
31	97753	7	1534*	29	27226	12	21610*	1	15015
33	55339	8	2305*	30	78745	13	23410*	2	39270
35	25601	9	4954	31	68179	14	39999	3	81510
37	24337	10	3601*	33	87271	15	88231		
39	41614	11	4762*	34	53362	16	71290		
41	55966	12	9634	35	56011	17	63505		

Conjecture A. For a large, h small, $N_{g f} / N_{g}$ is independent of a.
Conjecture B. For a large, h small, $N_{g f} \doteqdot N_{g 1} / f^{2}$.
4. Extreme Values. In Table IV we list the least determinant d ($d<100000$) which generates the quadratic number field $Q(\sqrt{ } d)$ with g genera and f ideal classes per genus.

In Table IV the values of d with an asterisk are those values d for which $h(d)$ is larger than any preceding class number.
h can be obtained analytically from the Dirichlet series $L(1, \chi)$ where χ is the character of the field $Q(\sqrt{ } d)$ using the formula, $h=L(1, \chi) \sqrt{ } D / 2 \ln \epsilon, D$ being the discriminant of $Q(\sqrt{ } d), \epsilon$ the fundamental unit. In [7] Shanks notes $L(1, \chi)=$ $O(\ln \sqrt{ } d)$. Also as $\epsilon=(x+y \sqrt{ } D) / 2$, with $x, y \geqslant 1, x^{2}-D y^{2}= \pm 4 \Rightarrow x>\sqrt{ } D-2$, $\epsilon>\sqrt{ } D-1$, and hence $h=O(\sqrt{ } d)$. In Table V we give those values of Table IV for which $h / \sqrt{ } d>0.4$.

Table V

d	2	10	226	82	730	50626	11026	399
h	1	2	8	4	12	96	44	8
h / \sqrt{d}	0.71	0.63	0.53	0.44	0.44	0.43	0.42	0.40.

Mathematics Department
Massey University
Palmerston North, New Zealand

1. C. F. GAUSS, Disquisitiones Arithmeticae, Fleischer, Leipzig, 1870; English transl., Yale Univ. Press, New Haven, Conn., 1966. MR 33 \#5545.
2. M. D. HENDY, "Applications of a continued fraction algorithm to some class number problems," Math. Comp., v. 28, 1974, pp. 267-277. MR 48 \#8440.
3. E. L. INCE, Cycles of Reduced Ideals in Quadratic Fields, Mathematical Tables, vol. IV, British Association for the Advancement of Science, London, 1934.
4. K. E. KLOSS, "Some number-theoretic calculations," J. Res. Nat. Bur. Standards Sect. B, v. 69B, 1965, pp. 335-336. MR 32 \#7473.
5. K. E. KLOSS, M. NEWMAN \& E. ORDMAN, Class Number of Primes of the Form $4 n+1$, National Bureau of Standards, 1965. (Deposited in the UMT file.)
6. R. B. LAKEIN, "Computation of the ideal class group of certain complex quartic fields," Math. Comp., v. 28, 1974, pp. 839-846.
7. D. SHANKS, Review of UMT file [5], Math. Comp., v. 23, 1969, pp. 213-214.

[^0]: Received September 29, 1974; revised February 24, 1975.
 AMS (MOS) subject classifications (1970). Primary 12A25, 12 A50.
 Key words and phrases. Ideal classes, continued-fraction expansion, Lagrange algorithm, ideal genera, Dirichlet series, fundamental unit.

